Indian Statistical Institute, Bangalore

B.Math (Hons.) III Year, First Semester Mid-Semester Examination Complex Analysis September 23, 2011 Instructor: B.Bagchi Maximum marks: 100

Time: 3 hours

- 1. For any fixed real number c, let $r_c : \mathbb{R} \to \mathbb{C}$ denote the path given by $r_c(x) = x + ic$.
 - a) Use the fundamental theorem to prove that $\int_{r_c} e^{-z^2} dz$ is independent of $c \in \mathbb{R}$.

b) Hence find a formula for the function

$$\phi : \mathbb{R} \to \mathbb{R}$$
 given by
 $\phi(t) = \int_{-\infty}^{\infty} e^{itx} e^{-x^2} dx$

(You may use without proof the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$).

- [10+5=15]
- 2. Let f be an entire function, i.e f is holomorphic on the entire complex plane.

a) Show that there is a power series around 0 representing f throughout \mathbb{C} .

b) Say $f(z) = \sum_{n=0}^{\infty} a_n z^n, z \in \mathbb{C}$. Then it is easy to see that for any $r > 0, \ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$.

Now suppose there is a non-negative integer m and a constant c > 0 such that $|f(z)| \le c |z|^m$ for all z in \mathbb{C} .

Then use the above formula to show that f must be a complex polynomial of degree $\leq m$.

[5+20=25]

3. Let f be an entire function given by the formula

$$f(x+iy) = \sum_{k,l=0}^{N} a_{kl} x^{k} y^{l}, x, y \in \mathbb{R},$$

where a_{kl} are complex constants.

Then show that f must be a complex polynomial.

(Hint: You may use the results from question 2.) [15]

- 4. Let $f : \Omega \to \mathbb{C}$ be a continuous function such that $\int_{r} f = 0$ for all closed paths r in Ω . Then show that f is holomorphic. [20]
- 5. Let Ω be a convex domain and $f : \Omega \to \mathbb{C} \setminus \{0\}$ be holomorphic. Then show that there is a holomorphic branch of the logarithm of f.

(Hint: First find a primitive of such a branch.) [25]